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Abstract

Personnel selection has always and will continue to be a challenging endeavor for the

military special operations. They want to select the best out of a number of qualified

applicants. How an organization determines what makes a successful candidate and

how to compare candidates against each other are some of the difficulties that top tier

organizations like the special operations face. Value focused thinking (VFT) places

criteria in a hierarchal structure and quantifies the values with criteria measurements,

known as a decision model. The selection process can be similar to a college selecting

their students. This research used college student entry data and strategic goals as

a proxy for special operations applicants and standards. It compared two case stud-

ies of college admissions selection criteria. A sample pool of 8,000 select and 24,000

non-select candidates was generated from real world datasets. VFT was applied to

develop a valid admissions selection process model. The schools admissions docu-

mentation was used to build the hierarchies, single attribute value functions (SAVF),

multi-attribute value functions (MAVF), and weights. A Monte Carlo simulation was

used to sample applicants from the generated pool and examined how accurately the

models were able to select the correct applicants.
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IMPROVING PERSONNEL SELECTION THROUGH VALUE FOCUSED

THINKING

I. Introduction

When I find an employee who turns out to be wrong for a job, I feel it is
my fault because I made the decision to hire him.

–Akio Morita

Co-Founder of Sony (Heller, 1997)

1.1 Motivation

Personnel selection has always and will continue to be a challenging endeavor. Re-

cruiting the right person who will stay with and improve the organization is a complex

problem. Additionally, how an organization determine what makes a successful can-

didate and how they compare to a set of candidates can be a daunting task. These

are just some of the difficulties that all top tier organizations face. Decision analysis

can be used to aid organizations with these difficult decisions.

Decision analysis is a philosophy and a social-technical process to create value for

decision makers (DMs) and stakeholders facing difficult decisions involving multiple

stakeholders, multiple (possibly conflicting) objectives, complex alternatives, impor-

tant uncertainties, and significant consequences. Decision analysis is founded on an

axiomatic decision theory and uses insights from the study of decision making (Par-

nell et al. , 2013). In general, the availability of means and the individual preferences

of the DMs, is a highly complex problem. The multi-criteria nature of the problem

1
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makes multi-criteria decision making (MCDM) methods ideal to cope with this, given

that they consider many criteria at the same time, with various weights and thresh-

olds, having the potential to reflect at a very satisfactory degree the vague most of

the times preferences of the DMs (Kelemenis & Askounis, 2010).

One form of MCDM is Multi-Objective Decision Analysis (MODA), which is the

process for making decisions when there are very complex issues involving multiple

criteria and groups who may be affected from the outcome of the decision. MODA

allows for the selection of a best solution amongst a pool of available alternatives

through value trade-off and factor weighting. When used for group decision making,

MODA helps groups discuss the problem in a way that allows them to consider the

values that each group views as important to the decision.

1.2 Contribution

The first contribution of this research is an examination of the ability for multi-

objective decision analysis to codify an organization’s selection process and the ability

to return alternatives that successfully inform the decision makers. That is to show

what organizations need to do to successfully implement a decision analysis approach

to personnel selection.

The second contribution is an assessment of some common techniques used to de-

termine the rank of alternatives, specifically value focus thinking, the MULTIMOORA

method, and response surface methodology. Two case studies are used to demonstrate

the ability to successfully rank alternatives, using the most effective technique, and

to provide additional analysis that helped determine the alternative’s strength.

The third contribution is to show how the use of statistical software can aid de-

cision analysis calculations and visualizations. For this R was used to create a fully

functioning decision analysis package that assist in solving the multi-objective deci-

2
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sion analysis problem.

1.3 Assumptions

In many decision problems the evaluation of alternatives is complicated by alterna-

tive performance on uncertain attributes. This uncertainty is intuitively recognizable

as a distinct “lack” of complete knowledge or certainty but can derive from many

sources and thus assume multiple forms. We use the term “uncertainty” primarily

for uncertainty arising when the consequences of an action are unknown because they

depend on future events (Durbach & Stewart, 2012). Since this was the first venture

into this model, this research will not capture uncertainty.

1.4 Organization

This chapter highlights the goal of this analysis, which was to validate the selection

techniques with historical data and generated objectives. This will demonstrate the

hypothesis that the selection process can be improved using decision analysis.

The following chapter highlights the existing literature relevant to personnel se-

lection and the multi-criteria decision making models that are necessary to inform

the analysis. Chapter III provides the formulation of the model and justification by

looking at three different MODA methods. The analysis of two separate case studies,

their models, and results are presented in Chapter IV. Finally, Chapter V presents

significant insights and areas for future research.

3
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II. Literature Review

2.1 Overview

This research defines a methodology for the use of decision analysis, specifically

value focus thinking (VFT), in the prediction of personnel selection. This chapter

reviews previously published literature on the validity of personnel selection in indus-

try, current selection techniques used in the military, previous studies into the use of

decision analysis (DA) for personnel selection, and finally the use of the VFT method

of personnel selection.

2.2 Personnel Selection

Human capital is one of the core competences all companies must maintain to

keep their competitive advantages in the knowledge economy. Personnel recruitment

and selection directly affect the quality of employees. Hence, various studies have

been conducted on resumes, interviews, assessment centers, job knowledge tests, work

sample tests, cognitive tests, and personality tests in human resource management

to help organizations make better personnel selection decisions. Indeed, the existing

selection approaches focus on work and job analysis that are defined via specific tasks

and duties based on their static properties (Chien & Chen, 2008).

For more than half a century, data collected utilizing the assessment center (AC)

method has been used to make valid predictions of managerial and executive job

performance. Typically, the AC method is a set of simulations, including paper and

pencil tests, of job-related tasks to evaluate a candidates performance potential and

needs for development. In conjunction with a resume and structured job interview,

the information gained from the AC method assists organizational leaders in making

better selection decisions than decisions based solely on a resume and interview. The

4
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assimilation of technology into the AC method reduces costs, time to administer, and

time to score (Papadopoulos, 2012).

Today, however, with all of the advances in technology there is so much information

available that organizations can easily be overwhelmed or unable to process it all by

normal means. Countless books, journals, newspapers, and social media sites exist

that can offer profound insights into potential candidates beyond that of a normal

resume and reference point of contacts. Over the last few years new means of filtering

this immense amount of data has emerged under the title of data mining. Data mining

uses various algorithms and techniques to isolate useful information from a mass

amount of data and make personalized suggestions of a small subset of them which

a user can examine in a reasonable amount of time. Data mining allows recruiters

or interviewers to quickly filter, organize, and rank candidates skills based on the

organizations required qualifications. If the qualification values of a candidate are

closer or even higher than the respective values of the specific job requirements, the

candidate has a higher probability of being hired. Optimization can be utilized to

calculate the smallest distance between the values of the preferences of an employer

and the values of the characteristics of a group of available candidates in order to find

the best matches and consequently to make recommendations (Almalis et al. , 2014).

Analytic thinking approaches are another set of suitable methods to address the

problem of personnel selection. Analytic thinking systematically breaks down a ‘sys-

tem’ into even smaller clusters. The resulting hierarchy provides large amounts of

information integrated into the structure of a problem and forms a more complete

picture of the whole system. The Analytic Hierarchy Process (AHP) is a suitable

approach when the hierarchical levels are independent of each other and the Analytic

Network Process (ANP) is used when factors are dependent. ANP allows for dealing

with imprecise and uncertain human comparison judgments by allowing fuzzy value,

5
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and the decision capability of the decision maker by structuring the complex problem

into hierarchical structure with dependencies and feedback system.

Multiple criteria decision making (MCDM) is generally described as the process

of selecting from a set of available alternatives, or ranking the alternatives, based on

a set of criteria, which usually vary in significance. Because of this MCDM can be

used to solve a multitude of problems including personnel selection.

2.3 Selection in the Military

Predictors to determine a soldier’s outcome during special forces (SF) training

has been used for decades. Traits of predictors typically fall into three categories:

physical ability, mental fortitude, and technical expertise.

The Australian Army conducted a study of their SF selection data to try to predict

a candidate’s pass/fail outcome based on their physical capability standards. Since

the outcome of a failure carries a logistical and financial burden, it was determined

that minimum performance standards possess a high sensitivity and high degree of

specificity (Hunt et al. , 2013). This work was done to reduce the number of candi-

dates at the selection course that would be more likely to fail. The conclusion was

the Australian Army was unable to pre-predict pass/fail outcomes, but could deter-

mine a combination of standards that when applied together helped predict which

candidates could successfully complete the course. For example, the pass rates for

the selection course ranges from 18% to 70%, where most of the candidates fail from

being physically prepared, specifically for the 20-km march. The study found that

those candidates who completed the 5-km march in less than 45:45 minutes, achieved

greater than level five on the sit-up test, and completed over 66 push-ups were sta-

tistically more likely to pass the course than those who were unable to meet these

standards.

6
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The Norwegian Naval Special Forces (NSF) evaluated the validity of psychological

testing for predicting pass/fails results of their candidates (Hartmann et al. , 2003).

Previous analysis on pilots suggested that cognitive and psycho-motor abilities were

a better predictor of performance than intelligence and personality attributes. This

testing looked at candidates scores on a Norwegian version of the Minnesota Mul-

tiphasic Personality Inventory’s (MMPI) Big Five and the Rorschach Inkblot test.

Multivariate analysis showed there was significant correlation between variables of

the Rorschach test and some minor correlation between variables of the Big five. A

75% classification accuracy was achieved.

The United States Army had the Army Research Institute create a new screening

criteria based on spatial recognition due to the large number of candidates that were

failing the land navigation course. The goal was to predict if a candidate possessed

the skills necessary to pass the Qualification Course (Bus, 1991). Potential candidates

were given a map, orientation, and maze test. In addition to these three tests, the

candidates cognitive and physical fitness scores were recorded. The correlation was

able to predict pass/fails at 67%, which was just slightly higher than the actual

pass/fail rate of 60%. It was noted, however, that the orienteering portion of Special

Forces Assessment and Selection (SFAS) was considered a ”stress test” and there were

potentially outside variables not measured.

Duckworth (Duckworth, 2016), maintains that one’s ability to succeed in SF train-

ing be based on their ”grit”. She defined grit as a combination of passion and persever-

ance for a singularly important goal. For this testing SF candidates were evaluated on

grit, intelligence, fitness and years of schooling. The resulting linear regression model

showed that grit contributed significantly to the model. Additionally, individuals who

scored one standard deviation from the mean grit were 32% more likely to complete

SFAS training.
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Another approach to predicting personnel likely to qualify for SF is to build person-

ality profiles to determine an ideal candidate. Along this avenue, the average SEAL’s

psychological profile was compared to that of the “normal” adult male. SEALs scored

lower in Neuroticism and Agreeableness, average in Openness, and higher in Extro-

version and Conscientiousness compared that of the normal male. Extroversion and

conscientiousness scores have been shown to predict job performance in other high

performance professions. This follows with SEALs who typically seek exciting and

dangerous environments, but are otherwise stable, calm, and rarely impulsive. While

this case does not capture the traits of each individual SEAL it does provide a good

baseline profile of the SEALs as a whole for the US Navy (Braun et al. , 1994).

Finally, Diemer (2001) provides an in depth look at predicting selects or non-

selects. He was determined that the most productive and relevant recruitment ap-

proaches were those that emphasize quality over quantity. Targeted recruiting of

fewer higher quality soldiers as the main effort while increasing the pool of eligible

candidates by tapping into several low number, high-yield, and high-payoff support-

ing efforts would be the most successful. Additionally, striking a balance between

highly trainable physical attributes, such as the need for “moving in excess of 180

kilometers with a (45-65 lbs) rucksack,” with the attributes that SF has determined

as more difficult to train, yet just as important to success in SF operational units,

will provide the biggest bang for the buck and insure that the best soldiers will attend

the training phases of Special Forces Qualification Course (SFQC) (Diemer, 2001).

2.4 Previous Applications of Decision Analysis in Selection

During the second half of the 20th century, MCDM was one of the fastest growing

areas of operational research (Stanujkic et al. , 2013). Because of this many different

MCDM methods have been proposed. Among the MCDM application problems that
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are encountered in real life is the personnel selection problem. This problem, from

the multi-criteria perspective, has attracted the interest of many scholars.

TOPSIS

A common MCDM method is the Technique for Order of Preference by Similarity

to Ideal Solution (TOPSIS), originally developed by Hwang and Yoon in 1981. Like

all MCDM approaches, TOPSIS follows the general path of establishing an evalua-

tion criteria, generating alternatives, evaluating the alternatives, applying a MCDM

method, and find optimal alternative (Opricovic & Tzeng, 2004).

Using TOPSIS for personnel selection is not a new concept. Recruitment activities

are processes aimed at singling out applicants with the required qualifications. Sub-

stantial research has been conducted on recruitment due to its critical role in bringing

human capital into organizations. In a research study that occurred in 2013, TOPSIS

was applied to the selection of an academic of staff. It used the opinions of experts

applied to TOPSIS to successfully model the group decision making process. There

were ten qualitative criteria for selecting the best candidate amongst five prospec-

tive applications. A framework was developed based on the concepts of ideal and

anti-ideal solution for selecting the most appropriate candidate from the short-listed

applicants. The method enables users to incorporate data in the forms of linguistic

variables (Safari et al. , 2014).

Organizations have also used TOPSIS to measure not only qualifications, but per-

formance as well. A combination of Fuzzy TOPSIS and data envelopment analysis

(DEA) was used to select the highest performers among 13 departments at a univer-

sity based on 10 criteria (number of PhDs, associate professors, assistant professors,

instructors, budget of departments, number of credit hours taught, number of alumni,

instructor evaluation scores, number of academic categories, and number of academic
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papers). The alternatives were scored by the DEA approach, then the opinion of

experts group DM, called the intuitionistic Fuzzy TOPSIS (IFT) method, was ap-

plied. The results of both methods were multiplied to obtain the final ranking. The

combination of DEA and IFS does not replace DEA, instead it provided further anal-

ysis into the ranking the departments by combining the individual opinions of DMs

(Rouyendegh, 2011).

Game Theory

Game theory has been applied in conjunction with MCDM to aid in personnel

selection. A method based on combining of Game Theory and MCDM concepts

was developed where the MCDM framework is applied for evaluating strategies and

weighting the criteria and Game Theory was used for the final evaluating of appli-

cants. Some instances of personnel selection are more complicated and important

because some positions are so critical and important for all sections of a company or

organization. This method was applied to selecting between two final CEO applicants

with different strategies and ideas. The methodology was devised to help in top-level

of human resource management field where selecting the best applicant can totally

change the future of organizations and companies. This methodology accommodates

the dynamic process of decision making. Decision makers make different decisions

with more depth in issues regarding the situation of alternatives (players) and also

strategies (Zolfani1 & Banihashemi, 2014).

Simple Additive Weighting

Simple Additive Weighting (SAW) is the simplest and therefore most often used

multi attribute decision method (Podvezko, 2011). An evaluation score is calculated

by summing the values, associated with each evaluation criterion, and weighting them
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according to the relative importance of each criterion as determined by the DM. The

advantage of this method is that it is a proportional linear transformation of the

raw data therefore the order of magnitude of the standardized scores remains equal

(Afshari et al. , 2010a).

Analytic Hierarchy Process

Analytic Hierarchy Process (AHP) is a multiple criteria decision-making tool that

uses the attributes eigenvalues for pair-wise comparison (Saaty, 1980). AHP allows

for the problem to be laid out in different levels, or hierarchies, that outline the

goals, criteria, necessary sub-criteria and alternatives. The different criteria maximum

eigenvalues, consistency index (CI), consistency ratio (CR), and normalized values for

each alternative are tested until these values lie in a desired range.

Tam and Tummala (2001) used AHP in the vendor selection for a telecommuni-

cation system, which was a complex, multi-person, multi-criteria decision problem.

They found AHP to be very useful in involving several decision makers with differ-

ent conflicting objectives to arrive at a consensus decision. Their proposed model

was applied to two case studies. In both, the decisions reached using AHP agreed

with those obtained using the pre-existing selection process. However, for the AHP

model, the selection criteria were clearly identified and the problem was structured

systematically. This enabled the DM to better examine the strengths and weaknesses

of each alternative (Tam & Tummala, 2001).

VIKOR

Opricovic (1998) developed the VIKOR method for optimization of complex sys-

tems. VIKOR ranks alternatives by looking at a set of alternatives and determines

a compromised solutions. It determines the ranking list and the optimal solution by

11



www.manaraa.com

introducing the multi-criteria ranking index based on a measure of closeness to the

ideal solution. The VIKOR method provides a maximum group utility for the ma-

jority and a minimum of an individual regret for the opponent. The VIKOR method

was used to select of personnel in hospital tertiary care. The results showed that

the VIKOR method can successfully order personnel with uncertain and incomplete

information (Liu et al. , 2015).

ELECTRE

The ELECTRE method by Roy (1991), is widely it ability to handle both quali-

tative and quantitative data. A study was done were a telecommunications company

in Iran applied ELECTRE to their personnel selection process. While it was able to

rank order candidates there was concern over its ability to properly account for the

qualitative criteria as their structure did not allow or precise measurements (Afshari

et al. , 2010b).

PROMETHEE

Preference Ranking Organization Method for Enrichment Evaluation (PROMETHEE)

is designed to solve problems where alternatives are ranked by considering mul-

tiple, sometimes conflicting, criteria. There are six types of preference functions

in PROMETHEE method, so decision makers can develop flexible scoring criteria

according to the requirement of particular need. PROMETHEE was used for a

transnational enterprise’s desires to select an overseas marketing manager. Where

a board of directors want to choose the best of five candidates based on four crite-

ria. PROMETHEE presented a flexible method to deal with the personnel selection

problem based on different evaluation information which included quantitative and

qualitative information (Chen et al. , 2009).
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MOORA

Brauers and Zavadskas (2006) developed the Multi-Objective Optimization on the

basis of Ratio Analysis (MOORA) method. This method is the process of optimizing

two or more conflicting objectives subject to certain constraints. It is composed

of two parts. First is the ratio analysis, where each criteria of an alternative is

compared to the square root of the sum of squares of the responses and the sum

of beneficial criteria is subtracted from the sum of non-beneficial criteria. Finally,

all alternatives are ranked, according to the obtained ratios. Second is the reference

point theory which chooses for maximization a reference point, that has the highest

value per objective and for minimization, the lowest value. The distance between

this optimal point and all points of that objective are calculated and the highest

value for each alternative is recorded as the furthest point from optimal. This values

are rank ordered from smallest to largest. Finally the average rankings of the ratio

analysis and reference point theory determine the final alternative rankings (Brauers

& Zavadskas, 2006).

Table 1 compares of some of the most widely used MODA methods by their com-

putational time, simplicity, mathematical calculations involved, stability, and type of

the information it can process. From this, MOORA clearly outperformed the other

MODA methods in terms of its universal applicability and flexibility as an effective

method in solving complex decision-making problems (Chakraborty, 2011).

MULTIMOORA

MULTIMOORA is composed of two parts, MOORA (ratio analysis and reference

point theory) and of the Full Multiplicative Form of Multiple Objectives. Developed

by Miller and Starr (1969), the full multiplicative form consists both maximization

and minimization of a purely multiplicative utility function. The overall utilities
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Table 1. Comparative performance of some popular MODA methods

Method Computational Simplicity Calculations Stability Information
Time Involved Type

MOORA Very less Very simple Minimum Good Quantitative
AHP Very high Very critical Maximum Poor Mixed
TOPSIS Moderate Moderate Moderate Medium Quantitative
VIKOR Less Simple Moderate Medium Quantitative
ELECTRE High Moderate Moderate Medium Mixed
PROMETHEE High Moderate Moderate Medium Mixed

are obtained by the multiplication of different units of measurement and become

dimensionless.

The MULTIMOORA method has been applied in various studies to solve a wide

range of problems including economics/regional development, mining, prioritization

of energy crops, construction, and personnel selection. Dumlupinar University, in

Turkey, applied the MULTIMOORA method to it’s Erasmus student selection pro-

cess, which determines which students are admitted into the University’s study abroad

program. The students were evaluated to determine their foreign language compe-

tency through written and oral exams. Then, they were ranked ordered using the

MULTIMOORA method. The MULTIMOORA method was also extended into the

fuzzy environment, meaning that the constraint boundaries are not sharply defined,

to allow for even more flexibility. It was determined that in many real-life situations,

both quantitative and qualitative criteria should be considered to accurately rank can-

didates and select the most suitable ones. DMs often use uncertain judgments and

it was necessary to convert these judgments to numerical values. Therefore, MUL-

TIMOORA was an effective method to determine an unbiased ranking of students

(Deliktas & Ustun, 2017).
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Response Surface Methodology

When optimization involves more than one response, it is not possible to optimize

each one individually. In cases like these the solution process must look for an opti-

mal region, that is a compromise solution must be found (Derringer & Suich, 1980).

Derringer and Suich (1980) were able to optimize multiple responses by developing a

desirability function. This functions goal is to find conditions that ensure compliance

with the criteria of all the involved responses. This is done by converting the differ-

ent responses into a single scale, and combining the individual responses into a single

function. Once the variables are converted into desirability functions, they are com-

bined in the global desirability (D) to find out the best joint responses (VeraCandioti

et al. , 2014).

2.5 Value Focused Thinking

Value focused thinking (VFT) is a strategic, quantitative approach to decision

making that uses specified objectives, evaluation measures, and value hierarchies

(Kirkwood, 1997). Because of this VFT is a useful method to use for problems

that involve selection criteria or rank ordering of alternatives.

VFT is usually applied through a ten step model (see Figure 1). For Step 1, the

problem is framed to ensure the purpose, perspective and scope are understood by

all parties. In Step 2, objectives are found that represent the values of the DM. The

primary means of doing this is to review organizational standards. There are four

information standards: platinum, gold, silver, and combined. Platinum standard is

from interviews with the DMs. The gold standard is from official documentation,

while the silver standard is from interactions with the DMs representatives and un-

official documentation. The combined standard is a mix of any two or more of these.

Objectives are then arranged in a hierarchal model that represents the organizational
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goals. Step 3 develops evaluation measures for each attribute, or a measuring scale

for the degree of achievement. These can be either continuous or discrete sets. In

Step 4, the evaluation measures are used to define single attribute value functions

that convert the raw data into value scores. For Step 5, weights are determined for

each attribute for the multi attribute value function. Step 6, alternatives are created

and screened to ensure they are valid. For Step 7, value scores are multiplied by

their respective attributes weight to determine each alternative’s score. Steps 8 and

9, allow for deterministic and sensitivity analysis to gain additional insights and test

the model’s resiliency to changes. Finally, in Step 10, the results are communicated

to the DM. This 10-step process is discussed in depth in Chapter III.

Figure 1. Steps of Value Focused Thinking (Shoviak, 2001)

In the early 2000s the Army applied VFT in its acquisition of infantry simulation

tools (Boylan et al. , 2006). The Army looked to quickly field a system in order

to keep up with growth in technology. To support the acquisition process, a multi-
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objective approach rooted in VFT was applied to the selection process. The selection

process was broken into four phases: problem identification, model design and analy-

sis, decision making, and implementation. The primary goal of the problem definition

phase was to conduct a thorough investigation of the problem, achieved through DM

interviews and systems analyses. This ensured the identification of critical inputs,

outputs, and functions, as well as the conditions in which the system had to oper-

ate. Then the system requirements were combined with the DM objectives to create

a value hierarchy used to evaluate and compare potential alternatives. Evaluation

measure were determined as means of ranking alternatives. Weights were assigned to

the criteria based on DM input. The design and analysis phase began with alterna-

tive generation and screening. Eleven different alternatives were generated. In the

decision making phase the alternatives were scored according to the predetermined

weights and the value hierarchy. Sensitivity analysis was conducted on the attributes

weights and on the performance estimates used to convert the raw score to value

scores. For implementation, it was determined that the best course of action was

to combine three systems that were already in use to allow communication between

them. This was also the highest scoring alternative (Boylan et al. , 2006).

The main objective of the selection process is to evaluate the differences among

candidates, or alternatives, and determine which one is best meets the organization’s

goals, or criteria. VFT places criteria in a hierarchal structure and quantifies the

values with criteria measurements, known as a decision model. Alternatives are scored

by the value model, qualifying how well the criteria are achieved. Because of this VFT

is well suited to solve the selection problem.
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III. Methodology

3.1 Multi-Objective Decision Analysis Overview

Most complex decisions involve more than a single objective. Multi-objective de-

cision analysis (MODA) is the process that allows for decision makers (DMs) to make

trade-offs between different objectives. This allows for the ability to compare dis-

parate alternatives by converting everything into common value scores. Too often

decisions are solved by taking the problem’s alternatives and then the objectives used

for evaluation are determined. This is alternative focused thinking and it is reactive

rather than pro-active (Keeney, 1994). Value focus thinking (VFT) defines values and

objectives before identifying the alternatives. VFT is designed to focus the decision

maker on the essential activities that must occur prior to solving a problem. VFT

helps uncover hidden objectives and leads to more productive information collection

(Keeney, 1994). This type of thinking is what makes using VFT for personnel selec-

tion so successful. It compels DMs to determine what characteristics they are looking

for in candidates. Figure 2 from Keeney highlights some of the benefits of VFT.

Figure 2. Benefits of Value Focused Thinking (Keeney, 1994)
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This chapter examines three well respected MODA methods to determine which

is the most effective for personnel selection. To do this a demonstration case is used.

For the case, the overall goal is to win the World Series. Throughout this scenario

a combination of silver and gold standard documents are used. Data for ten teams

were created using random numbers generated from the average high/low scores of

the ten post season teams over the last five years (see Table 2). The data categories

were:

• Slugging percentage (SLG): The batting productivity of a team. SLG measures

the number of bases a team has reached divided by the number of at bats

(attempts).

• Runs (R): The number of runs (points) that a team scores during the season.

This is a measure of their offensive performance.

• Stolen Bases (SB): The number of bases a team steals during the season. A

stolen base advances the runner beyond their hitting, making it easier for them

to score.

• Earned Run Average (ERA): The pitching performance of a team. This is

measured by the number of number of earned runs scored against a team divided

by the number of innings pitched.

• Saves (SV): The number of recorded saves the pitchers record for the season.

This is a good measure of how teams perform in close games (under pressure).

• Strikeouts (SO): The number of strikeouts that a team induces in a season. This

is considered to be a good measure of pitching efficiency.

• Fielding Percentage (FP): This measures the defensive strength of a team. It is

the calculated by the number of times a team handles the ball properly divided
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by the total number of times they handle the ball.

• Double Plays (DP): This is the number of times a team is able to get two outs

on the same play. It is a good measure of how teams keep base runners from

advancing.

Table 2. Demonstration Case Decision Matrix

SLG R SB ERA SV SO FP DP
Team 1 0.432 598 145 0.393 30 1109 0.986 134
Team 2 0.376 748 59 0.430 31 1316 0.989 134
Team 3 0.404 831 57 0.370 52 1026 0.990 159
Team 4 0.369 631 91 0.317 57 983 0.985 137
Team 5 0.372 625 161 0.431 49 1285 0.981 125
Team 6 0.358 672 113 0.311 54 1101 0.979 164
Team 7 0.389 690 53 0.367 32 1289 0.978 167
Team 8 0.432 796 147 0.406 38 1281 0.988 134
Team 9 0.421 656 52 0.347 27 1051 0.986 128
Team 10 0.470 618 94 0.383 51 1213 0.984 129

3.2 Response Surface Methodology

Response surface methodology allows examining an optimal solution by applying

multiple response optimization, which is a form of multi-objective analysis. For this,

the raw data is rescaled into a desirability score, 0 ≤ di ≤ 1, where the target value

is di = 1 and the bad value (base) is di = 0 (see Table 3). The desirability score was

calculated as shown by Equation (1).

|Score−Base|
Range

(1)

The determined weights (wi) are then applied to the desirability scores (di) and
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Table 3. Demonstration Case Scaled Values

SLG R SB ERA SV SO FP DP
Team 1 0.661 0.000 0.853 0.317 0.100 0.378 0.667 0.214
Team 2 0.161 0.644 0.064 0.008 0.133 1.000 0.917 0.214
Team 3 0.411 1.000 0.046 0.508 0.833 0.129 1.000 0.810
Team 4 0.098 0.142 0.358 0.950 1.000 0.000 0.583 0.286
Team 5 0.125 0.116 1.000 0.000 0.733 0.907 0.250 0.000
Team 6 0.000 0.318 0.560 1.000 0.900 0.354 0.083 0.929
Team 7 0.277 0.395 0.009 0.533 0.167 0.919 0.000 1.000
Team 8 0.661 0.850 0.872 0.208 0.367 0.895 0.833 0.214
Team 9 0.563 0.249 0.000 0.700 0.000 0.204 0.667 0.071
Team 10 1.000 0.086 0.385 0.400 0.800 0.691 0.500 0.095

summed to calculate the final alternative’s scores (D) using Equation (2).

D =
n∑

i=1

widi (2)

Table 4 shows the final alternative scores. Team 8 was the highest ranked alter-

native.

Table 4. Demonstration Case RSM Rankings

Score Rank
Team 8 0.6345 1
Team 3 0.5874 2
Team 10 0.5352 3
Team 6 0.4649 4
Team 4 0.4064 5
Team 7 0.3995 6
Team 2 0.3855 7
Team 9 0.3675 8
Team 1 0.3486 9
Team 5 0.3368 10

3.3 The MULTIMOORA Method

Multi-objective optimization by ratio analysis (MOORA) composed of two meth-

ods: ratio analysis and reference point theory. When MOORA is combined with a full
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multiplicative form for multiple objectives, the three methods are joined under the

name of MULTIMOORA. For the MULTIMOORA method, the demonstration case

used the same decision matrix and weights as determined during the VFT approach.

The first step in using the MULTIMOORA method was to determine the perfor-

mance goals (maximize or minimize) for each evaluation measure. Table 5 shows the

performance goals for this scenario.

Table 5. Demonstration Case MULTIMOORA Evaluation Measures

Value Measure Goal Measurement
Slugging % Maximize Measure of the batting productivity of a hitter
Runs Maximize Number of runs scored
Stolen Bases Maximize Number of bases stolen
Earned Run Avg Minimize Mean of earned runs given up per nine innings
Saves Maximize Number of saves recorded
Strikeouts Maximize Number of strikeouts recorded
Fielding % Maximize Percentage of times player properly handles ball
Double Plays Maximize Number of double plays turned

For the ratio system of the MOORA method, the decision matrix was normalized

by comparing each performance value of an alternative of a criterion against the other

alternative performances on that criterion by:

x∗ij =
xij√∑m
j=1 x

2
ij

(3)

The weighted normalized performance values of beneficial criteria were added to-

gether, and then the same procedure was repeated for the non-beneficial criteria.

The sums for non-beneficial criteria were subtracted from the sums for beneficial

criteria using:

y∗i =

g∑
i=1

wjx
∗
ij −

n∑
i=g+1

wjx
∗
ij (4)

This produced the ratios, meaning how well the objectives scored compared to one

another. See Table 6 for the ratio rankings.

22



www.manaraa.com

Table 6. Demonstration Case MOORA Ratio Scores∑g
j=1 x

∗
ij

∑n
j=g+1 x

∗
ij y∗i Rank

Team 8 0.279 0.065 0.214 1
Team 6 0.255 0.050 0.205 2
Team 3 0.264 0.059 0.204 3
Team 10 0.264 0.061 0.203 4
Team 4 0.246 0.051 0.195 5
Team 5 0.263 0.069 0.194 6
Team 1 0.245 0.063 0.182 7
Team 7 0.238 0.059 0.179 8
Team 2 0.243 0.069 0.174 9
Team 9 0.226 0.056 0.170 10

The reference point approach used the weighted normalized decision matrix. The

maximal objective reference points (rj) was the best attribute score for each objec-

tive (highest score for objectives maximized and the lowest score for those objectives

minimized). The absolute value of the difference of each attribute score was sub-

tracted from the maximal objective reference point, then the highest difference for all

objectives was recorded as the alternative’s score, as shown by:

min
i
{max

j
|rj − x∗ij|} (5)

Equation (5 gives each alternatives maximum distance from optimal. The alternatives

were then ranked lowest to highest and Table 7 is their reference point ranking.

The Multiplicative form for multi-objectives was introduced by Miller and Star

(1969). It is nonlinear, non-additive and unweighted. The overall utility for each

alternative was obtained by the multiplication of difference units of measurement,

becoming dimensionless. In fact, in the full-multiplicative form the relation between

the utilities does not change if more importance is given to an objective by multiplying

it by a factor (weights). This was because all alternatives were multiplied by the

same factors. To handle the combination of minimization and maximization goals,
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Table 7. Demonstration Case Deviation from Reference Point

SLG R SB ERA SV SO FP DP Max Rank
Team 8 0.006 0.004 0.003 0.015 0.016 0.001 0.000 0.001 0.016 1
Team 6 0.018 0.017 0.010 0.000 0.003 0.008 0.000 0.000 0.018 2
Team 3 0.010 0.000 0.021 0.009 0.004 0.010 0.000 0.000 0.021 3
Team 4 0.016 0.021 0.014 0.001 0.000 0.012 0.000 0.001 0.021 3
Team 7 0.013 0.015 0.021 0.009 0.021 0.001 0.000 0.000 0.021 3
Team 2 0.015 0.009 0.020 0.019 0.022 0.000 0.000 0.001 0.022 4
Team 5 0.016 0.022 0.000 0.019 0.007 0.001 0.000 0.001 0.022 4
Team 10 0.000 0.023 0.013 0.012 0.005 0.004 0.000 0.001 0.023 5
Team 1 0.006 0.025 0.003 0.013 0.023 0.007 0.000 0.001 0.025 6
Team 9 0.008 0.019 0.022 0.006 0.025 0.010 0.000 0.001 0.025 6

rj 0.074 0.088 0.032 0.050 0.048 0.047 0.017 0.003

the objectives to be maximized were the numerators and those to be minimized were

denominators, as shown by:

Ui =
Ai

Bi

(6)

In this formula Ai and Bi were found as Ai =
∏g

j=1 xij and Bi =
∏n

j=g+1 xij. Where

g and (n - g) are the number of criteria to be maximized and minimized, respectively.

Finally, the utility scores were ordered from highest to lowest and these became the

multiplicative form’s rankings (see Table 8).

Table 8. Demonstration Case Degree of Utilities

Ai Bi Ui Rank
Team 6 2.595E+11 3.11 8.344E+10 1
Team 8 3.257E+11 4.06 8.023E+10 2
Team 5 2.890E+11 4.31 6.705E+10 3
Team 10 2.144E+11 3.83 5.597E+10 4
Team 4 1.602E+11 3.17 5.053E+10 5
Team 3 1.607E+11 3.70 4.343E+10 6
Team 1 1.646E+11 3.93 4.189E+10 7
Team 7 9.583E+10 3.67 2.611E+10 8
Team 2 8.971E+10 4.30 2.086E+10 9
Team 9 5.143E+10 3.47 1.482E+10 10

The final step using the MULTIMOORA method was to take the average of the
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three ranks determined by the ratio analysis, reference point, and the multiplicative

form, and determine the final rank order (see Table 9).

Table 9. Demonstration Case Rankings by the MULTIMOORA Method

MOORA MOORA Multiplicative MULTIMOORA
Ratio Ref Pt Form

Team 8 1 1 2 1
Team 6 2 2 1 2
Team 3 3 3 6 3
Team 10 4 5 4 4
Team 4 5 3 5 5
Team 5 6 4 3 6
Team 1 7 6 7 7
Team 7 8 3 8 8
Team 2 9 4 9 9
Team 9 10 6 10 10

3.4 Value Focused Thinking

Value focus thinking (VFT) looks at the values and objectives and allows for the

selection of a best solution amongst a pool of available alternatives through value

trade-offs and factor weightings.

The first step necessary in helping the DM is to identify the problem, referred to

as framing the problem. Improper framing can cause one to not fully understanding

the problem, overlooking key objectives, or even not involving the right stakeholders,

all of which can lead the failure of being able to make a good decision.

Once the decision frame is clear, objectives are identified and structured into the

value hierarchy. An objective is the specific goal being sought. Appropriate structur-

ing of objectives is critical to developing a successful value hierarchy. Stakeholders and

DMs must accept the qualitative value model as a valid model so they will ultimately

accept the quantitative analysis as rational.

Once the objectives are collected and a structure agreed upon, it is visualized
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through the value hierarchy. The value hierarchy places the overall, or strategic

objective at the top with all of the lower-tiered, or fundamental objectives, below.

The fundamental objectives are decomposed (if possible) until a single measurable

objective remains.

For the Demonstration case, winning the World Series was the strategic objective.

Most people agree that winning is commonly defined as scoring more runs than a

team gives up. Arnold Soolman (1970), examined the winning percentages for 1166

team over multiple seasons, and determined that the winning percentage was based

on batting (runs scored), pitching (earned runs allowed), and fielding (unearned runs

allowed) (Thorn & Palmer, 1984). Using this and the seventeen key attributes deter-

mined by Wiley’s (1976) analysis of how traditional baseball statistics were correlated,

the value hierarchy was determined (see Figure 3).

Figure 3. Demonstration Case Value Hierarchy

The attributes were reduced from seventeen to eight (see Table 10) to ensure that

the fundamental properties of completeness, non-redundancy, independence, opera-

tional, and conciseness were met. For example instead of including the number of

singles, doubles, triples, and home-runs by a team, the slugging percentage was used

since it accounts for all of those and converts it into a percentage to the number of

attempts.

The value hierarchy is a qualitative model. To conduct quantitative analysis,
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Table 10. Wiley’s Traditional Baseball Statistics (Thorn & Palmer, 1984)

Retained Not Retained
Slugging Percentage Batting Average

Doubles
Triples
Home Runs

Runs Scored
Stolen Bases
Earned Run Average Runs Allowed

Shutouts
Complete Games Pitched

Saves
Pitcher’s Strikeouts Walks
Fielding Percentage Errors
Double Plays

attributes are assigned to each of the lowest level of objectives. Attributes, also

called evaluation measures, are classified using a double dichotomy of natural or

constructed and direct or proxy. A natural scale is one that is common and can

be easily interpreted by everyone. While the constructed scale is developed to be

measurement the degree of obtainment of a specific objective. A direct scale measures

exactly the degree of obtainment of an objective, while a proxy scale reflects a degree

of attainment of its associated objective, but is not a direct measure this (Kirkwood,

1997).

To measure the fundamental objectives for the demonstration case, evaluation

measures were created (see Table 11) to determine the degree of achievement. For

this, end point ranges were determined by considering the possible values deemed

within the acceptable region. The ranges for the demonstration case were based on

the highest and lowest values over the regular season the past five seasons. Evaluation

measures allow for an unambiguous rating, that is if a person had infinite resources

and instantaneous computational powers could they assign an accurate score.

Single Value Attribute Functions (SAVF) are used to calculate an individual cri-
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Table 11. Demonstration Case VFT Evaluation Measures

Value Measure Low High Measurement
Slugging % 0.350 0.460 Measure of the batting productivity of a hitter
Runs 550 875 Number of runs scored
Stolen Bases 50 170 Number of bases stolen
Earned Run Avg 3.00 4.90 Mean of earned runs given up per nine innings
Saves 25 60 Number of saves recorded
Strikeouts 950 1350 Number of strikeouts recorded
Fielding % 0.978 0.990 Percentage of times player properly handles ball
Double Plays 120 170 Number of double plays turned

teria score from the raw data. Using a custom function built in R, SAVF for the

demonstration case were created (see Figure 4). The SAVFs were calculated using

the bisection, or mid value method. Normally the DM is interviewed to determine

the halfway mark for each value measurement, however for this mid points were cal-

culated by using the mean values of the ten teams that made it to the post season

(the playoffs) over the last five seasons. Exponential value functions were used for

each attribute; ERA was the only decreasing value function.

Figure 4. Demonstration Case Single Attribute Value Functions
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The final step in determining the alternatives score is to calculate the multi-

attribute value function (MAVF) score. This was done by multiplying each attributes

SAVFs (vi(xi)) by a vector of weights (wi) corresponding to each criteria (xi). The

general form of the MAVF is:

V (x) =
n∑

i=1

wivi(xi) (7)

The weights vector is normalized so that the sum of weights is equal to one:

n∑
i=1

wi = 1 (8)

Typically the weights are determined by the DM, preferably by using the platinum

or gold standard documents. For this demonstration case there were no platinum or

gold standard documents that outlined what the weights for each attribute should

be. However, Soolman’s calculations were used as silver standard documentation.

He determined that offense was approximately 50 percent of the game (because 88

percent of runs are earned), six percent was defense, and pitching 44 percent (Thorn

& Palmer, 1984). These are the global weights. The ratio of Wiley’s correlation

coefficients were normalized to determine the local weights (see Figure 5).

Figure 5. Demonstration Case Weighted Hierarchy

29



www.manaraa.com

Using the decision matrix, each alternative’s raw scores were converted to compo-

nent value scores by applying the associated SAVFs to each. Finally, an overall score

was found for each alternative by applying the weights developed in the MAVF to

the component scores (see Table 12).

Table 12. Demonstration Case MAVF Scores

Name Score
Team 8 0.5481
Team 10 0.5476
Team 3 0.4950
Team 6 0.4084
Team 4 0.3694
Team 2 0.3460
Team 1 0.3423
Team 7 0.3300
Team 5 0.3292
Team 9 0.3160

After the alternatives were scored, analysis was conducted to ensure the alternative

rankings were easily understandable, not misleading, and to see if there were any

insights or improvements that could be identified. This was done by looking at the

deterministic sensitivity of each alternative. The value breakout graph (see Figure 6)

allows for a quick and easy comparison of how each attribute affects the alternatives

and how it can compare to the ideal, or Utopian, candidate.

Once the model was deemed acceptable, sensitivity analysis was conducted to

determine the impact on the rankings of alternatives to changes in the various as-

sumptions of the model, specifically the weights. The weights represent the relative

importance attached to each evaluation measure. Figure 7 shows two of the attributes

sensitivity analysis graphs. Team 8 and Team 10 are very similar and are resilient to

changes in weighting as compared to the other eight teams. Teams 8 and 10 were so

similar that their MAVF scores were only 0.0005 points apart which is why changes

to the weighting will affect which of these two are the number one choice. In cases like
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Figure 6. Demonstration Case Breakout Graph

this additional analysis can be conducted to ensure the DM has the best information

to make an informed decision.

3.5 Conclusions

Table 13 shows the results of the three methods. Only two teams were ranked

the same throughout the three methods. However, MULTIMOORA and VFT were

the most similar with six teams matching. While the MULTIMOORA method was

less computationally intensive and time consuming than VFT, it lacked the ability

to show magnitude between different alternatives and lacked the ability to conduct

sensitivity analysis. The RSM approach was simple computationally, however because

the desirable attribute rescaled each group of attributes between zero and one the

possibility of alternative scores being skewed existed. VFT allows for some insight

into the selection process as apposed to a black box method style. Additionally, VFT
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(a) Runs

(b) Saves

Figure 7. Demonstration Case Sensitivity Analysis

allows for easy adjustments to the hierarchy if an organization’s focus ever changes.

Since this research was to select the best group of personnel possible by a team,

transparency and the ability to conduct sensitivity analysis are important. VFT

appears to allow for the most robust overall analysis and was the method that was

applied for the remainder of the research.
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Table 13. Method’s Results

VFT MULTIMOORA RSM
Team 1 7 7 9
Team 2 6 9 7
Team 3 3 3 2
Team 4 5 5 5
Team 5 9 6 10
Team 6 4 2 4
Team 7 8 8 6
Team 8 1 1 1
Team 9 10 10 8
Team 10 2 4 3
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IV. Analysis

4.1 Overview

Throughout this research the focus has been the ability to select personnel for

top tier organizations such as military special operations units. Information for these

types of organizations was not available in the required time frame so it was concluded

that the selection process for admittance into college universities were an acceptable

proxy. First, both are seeking high functioning individuals who share many of the

same personality traits like hard-working, determined, goal focused, well organized,

and many more. Additionally, the population that contains collegiate athletes are

physically fit and competitive. While there are differences between these two groups,

such as the technical and tactical skills required to be an SF operator, the process

of selecting personnel is fundamentally the same. There is a quantifiable amount of

known information for which is used to evaluate candidates, rank them, and to select

the very best from among a group.

This research compared two case studies of college admissions selection criteria.

The first school was non-competitive and the second was highly competitive. For

the purpose of this research a non-competitive school was defined as one that admits

greater than 90% of applicants, while a highly competitive school was defined as a

university that admits less than 10% of applicants. A selection pool of 8,000 select

and 24,000 non-select candidates was generated based off of the provided real world

datasets. Value focused thinking (VFT) was then applied to show a valid admissions

selection process model. The two schools admissions documentation were used to

gather information on the hierarchies, single attribute value functions (SAVF), multi-

attribute value functions (MAVF), and weights. Value hierarchies were determined

based on the colleges admission requirements. SAVFs were created using the normal-
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ized exponential constant with the mean of selected candidates being the mid-value

point. MAVFs and weights were determined by the ratio of the SAVFs correlation

coefficients. Sample applicants were drawn from the generated pool and examined to

see how accurately the models were able to select the correct applicants.

4.2 Case Study #1: Non-Competitive School

The first case study looked at the admission’s data for a specific major from a large,

non-competitive public university. This university had a lenient admissions policy,

looking only at GPA and ACT scores. The university also tracked which high school

the candidate attended to assess the quality of education the candidate potentially

received. From this a simple value hierarchy was created (see Figure 8). The selection

criteria was broken into four fundamental objectives, a candidates academic perfor-

mance (GPA), mental capacity (ACT composite score), analytic capability (ACT

math score), and the quality of their education (high school rank).

Figure 8. Non-Competitive Value Hierarchy

All evaluation measures (see Table 14) were based on constructed scales and for all

measures a higher value was preferred. The grade point average (GPA) is the GPA
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at the time the candidate submitted their college application. It’s range was from

zero to five to cover those schools that used an extended grading scale. The ACT

composite and math scores were the scores the candidate scored on the ACT test and

had submitted to the university. The range of this attribute was from 10 to 36, which

was deemed to be the feasible region of the scores. Finally, the high school rank score

is the score the university determined for each school a candidate attended based on

criteria such as student to teacher ratio, graduation rate, standardized test scores,

etc.

Table 14. Non-Competitive Evaluation Measures

Value Measure Low High Measurement
GPA 0.0 5.0 High School Grade Point Average
ACT Composite 10 36 ACT composite score
ACT Math 10 36 ACT math score
High School Rank 1 11 Assessed school score

Single attribute value functions (SAVF) were calculated for each of the four vari-

ables. Silver standards documentation showed that the university had no predeter-

mined weighting. With this, and not having access to the actual decision maker (DM)

exponential SAVFs were used where the attribute’s mid-value was the mean of the

respective attribute from the original dataset. All attributes were increasing SAVFs

(see Figure 9).

To calculate the multi-attribute value function (MAVF) the same method from

the demonstration case was used. Correlation coefficients were used to determine

how much each attributes contributed to the model and weights were based on their

ratios (see Figure 10). The global weights were 40.9%, 15.5%, 27.8%, and 15.8% for

the fundamental objectives.

The dataset needed to be cleaned prior to being used. This dataset had approxi-

mately 3,4000 observations and nine variables. The observations represented the ad-
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Figure 9. Non-Competitive Single Attribute Value Functions

Figure 10. Non-Competitive Weighted Value Hierarchy

mitted students and the variables were the data points the admission’s team tracked.

All biographical information was removed, and variables were reduced to ensure in-

dependence. It was assumed that gender, race, and declared major had no significant

impact to admittance. The final dataset had five variables (student number, high

school GPA, ACT composite score, ACT math score, and high school quality score).
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Additionally, 400 observations were removed due to missing data for their high school

quality score, leaving the final dataset with approximately 3,000 observations.

A known distribution was fit to each of the variables to allow for the ability to

easily generate new data points. A normal distribution was fit to each attribute to

ensure it would be an acceptable distribution to use when generating data. Using R,

8,000 random “select” candidates were generated using the defined normal distribu-

tion. One issue with this dataset was that it only contained data from candidates

already selected to attend the university. To address this, the means of the normal

distributions used to generate the “selected” candidates was shifted approximately

15% to the left to create “non-selected” candidates that were just slightly worse than

their counterparts. Again using R, 24,000 “non-select” candidates were generated.

Figure 11 shows the histogram of the dataset with the solid blue line representing the

normal distribution of “select” candidates and the dashed red line the “non-select”

candidates.

Figure 11. Non-Competitive Normal Distribution of Attributes
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A simulation was developed where the 8,000 “select” and 24,000 “non-select” were

combined, 4,000 candidates were randomly selected as a sample application year

group. The MAVF scores were calculated and all of the candidates were rank ordered.

The top 1,000 candidates were selected and compared to see how accurately the

“selected” candidates were chosen. If candidates were picked completely at random

to fill the 1,000 seat class the probability that candidates would all be chosen from

the “selected” group was 1.56%. This was calculated using Equation (9).

P (t) =

(
8000
1000

)(
24000
3000

)(
32000
4000

) = 0.0156 (9)

This model was repeated for 1,000 times in a Monte Carlo simulation. This model’s

selection accuracy rate was 55.16% (see Figure 12), just better that of flipping a coin,

but still better than choosing completely at random which was 1.56%. No additional

analysis was conducted to look at the potential for “non-selects” to be better than the

“select” candidates as was done because it was determined that this decision model

would not be able to yield any significant insights.

4.3 Case Study #2: Highly Selective School

For the second case study admission’s data from a small, highly competitive, liberal

arts university was used. Knowing that the school based the merits of a candidate on

their scholastic, athletic, and leadership accolades the variables were arranged into

an appropriate value hierarchy (see Figure 13). Scholastic ability was determined to

measure a candidate’s mental capacity through their standardized test scores (SAT

verbal and math) and their academic performance (class rank constructed score). The

athletic fundamental objective was determined by the candidate’s athletic capability

(athletic constructed score) and their fitness level (school administered physical fitness
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Figure 12. Non-Competitive Monte Carlo Simulation Results

test). Final, leadership was determined by their earned achievements (leadership

constructed score) and the extracurricular activities the candidate participated in

(extracurricular constructed score).

Figure 13. Competitive Value Hierarchy

All evaluation measures (see Table 15) were based on constructed scales, and for all
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measures a higher value was preferred. SAT Verbal and Math scores were the actual

verbal and math scores the candidates received when they took the SATs. These

scores range from a low of 400 to a high of 800. The remainder of the constructed

scales had a low of 200 and a high value of 800. The class rank constructed score was

a scale that was based on not only the candidates high school class rank and GPA, but

the size of their graduating class as well. The athletic constructed score was based on

how many sports a candidate participated in, for how many years, were they on the

varsity team, and did they place at any regional, state, or national level events. The

fitness test score was a constructed score based on how a candidate scored on six events

(basketball throw, pull-up, shuttle run, sit-ups, push-ups, and one-mile run) during a

school-administered test. The leadership score was a constructed score based on the

candidate’s leadership positions held in school and community organizations, while

the extracurricular constructed score is based on the number of extracurricular events

the candidate has participated in and the number of years they had participated in.

Table 15. Competitive Evaluation Measures

Value Measure Low High Measurement
Verbal Reasoning 400 800 Verbal score of the SAT
Analytical Capacity 400 800 Math score of the SAT
Class Rank 200 800 High school rank constructed score
Athletic Score 200 800 Assessed athletic activities score
Physical Fitness Test 200 800 Physical fitness test score
Leadership Score 200 800 Assessed community leadership score
Extracurricular Score 200 800 Assessed extracurricular activities score

Single attribute value functions (SAVF) were calculated for each of the seven vari-

ables. Due using silver standard documentation, and not having access to the decision

maker (DM) exponential SAVF were determined to be the best fit. All attributes were

increasing SAVFs (see Figure 14). The mid-values used to calculate ρ were the mean

value of each attribute from the original dataset.

To calculate the multi-attribute value function (MAVF) silver standard documents
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Figure 14. Competitive Single Attribute Value Functions

provided insight that the fundamental objective weights for scholastics, athletics, and

leadership were 60%, 25%, and 15% respectively. Correlation coefficients were used to

determine how each attribute contributed to the model and local weights were based

on their ratios (see Figure 15).

Cleaning of the original dataset was required to ensure it was usable for VFT.

The original data consisted of approximately 13,000 observations and 26 variables.

The observations represented the students who had been admitted to the university

over the course of the last 10 years. The variables were all of the data points the

admissions team recorded on candidates. The first step in cleaning the data was to

reduce the variables to an independent set. For example, the data points for the high
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Figure 15. Competitive Weighted Value Hierarchy

school class rank constructed score was kept in favor of the raw overall class rank

and the applicants high school class size since the constructed score was based off

the other two. Additionally, all biographical data was removed along with gender

and race. Finally, all students who only had ACT scores were removed (in favor of

those who had SAT scores) to eliminate the need for designing a scale to relate ACT

and SAT scores. This reduced the initial dataset from 26 variables to eight (Student

number, SAT verbal score, SAT math score, class rank constructed score, athletic

activity constructed score, fitness test score, leadership score, and extracurricular

activity score). The final dataset contained approximately 7,800 observations.

A normal distribution was fit to each attribute to ensure it was an appropriate fit

when generating additional data points. Using R, 8,000 “select” and 24,000 “non-

select” candidates were generated to allow for the ability to compare the two case

studies to one another. As in the first case study, the dataset only contained infor-

mation about candidates already selected, so the “select” candidates were generated

based on the 7,800 observations and the “non-select” candidates were generated by

slightly adjusting the mean of the normal distributions during data generation (see

Figure 16).

The same simulation developed for the non-competitive university was used to

allow for the ability to compare the two models. For this, a sample application group

of 4,000 candidates was again randomly selected from the pool of 32,000 (8,000 “select
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Figure 16. Competitive Normal Distributions of Attributes

and 24,000 “non-select) candidates, the MAVF scores were calculated, and the top

1,000 candidates were selected. This model was repeated for 1,000 times in a Monte

Carlo simulation and compared to see how accurately the “selected candidates were

chosen. This model correctly picked candidates from the “selected” pool 85.71% of

the time (see Figure 17), which was a far better accuracy than the random selection

probability of 1.56%.

Of note the 85.71% accuracy is likely a lower bound. This is due to the fact that

at least some of the “non-selects” that were chosen were better candidates than those

of the “selects” that were not chosen. The reason for this was the normal distribution

that was used to create the “non-selects” can sometimes generate random values

above those of the selects (see Figure 16). To illustrate this a single instance of the

model was run and five “non-selects” chosen for the university were compared to five

“selects” not chosen. Table 16 shows the MAVF score for each of the ten potential

candidates. The “non-select” candidates clearly scored better than their counterparts
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Figure 17. Competitive Monte Carlo Simulation Results

and therefore were better choices.

Table 16. Competitive Small Sample MAVF Scores

Student # MAVF Score Group
27890 0.6168 Non-Select
26452 0.5712 Non-Select
9977 0.5116 Non-Select
18696 0.4621 Non-Select
22349 0.4204 Non-Select
1608 0.3758 Select
2225 0.3621 Select
3921 0.3296 Select
2058 0.3021 Select
7986 0.2233 Select

This was further highlighted by using R to create a value breakout graph of the

candidates MAVF scores (see Figure 18). This figure shows the deterministic sen-

sitivity of each alternative. It allows for a quick and easy comparison of how each

attribute affects the alternatives. All of the “non-selects” scored considerably higher
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in the most heavily weighted attribute, the SAT verbal score, than all of the candi-

dates from the “select” population.

Figure 18. Competitive Small Sample Breakout Graph

Finally, sensitivity analysis was conducted to determine the impact on the rankings

of alternatives to changes in the various assumptions of the model, specifically the

weights (see Figure 19). The weights represent the relative importance attached

to each evaluation measure. It was shown that the “non-selects” (shown by the

solid lines) were resilient to changes in the weighting across all seven attributes. All

attribute weights would have to be at least doubled (or halved in the case of the

Verbal score) to have any impact on the “selects” overcoming the “non-selects”.

4.4 Comparison

Analysis of the two case studies showed how a well defined value hierarchy and

weighting can improve an organizations personnel selection. The less defined hierar-
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Figure 19. Case #2 Small Sample Sensitivity Analysis

chy from the first case study was only able to accurately place the “select” candidates

just over half of the time, while the well defined hierarchy from the second case study

was able to do so over 80% of the time. The transition from the hierarchy in the first

case study to the hierarchy in the second is an example of how an organization can

update their objectives to improve their quality of selection.

Additionally, the competitive university data allowed for additional analysis to be

conducted if desired through deterministic and sensitivity analysis. This provided the
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DM with more detailed information about how a candidate scored and how resilient

those candidates were to changes in weighting, or value trade-offs. This transparency

is beneficial to the selection process because it allows the choices to be debatable if

necessary.

48



www.manaraa.com

V. Conclusions and Future Research

5.1 Conclusion

This research showed how value focused thinking (VFT) could improve an organi-

zation’s personnel selection process. First and foremost, VFT allows for organizations

to codify their process so that it can be repeatable. The key to this is making sure

an accurate picture of the organization’s goals are captured through the value hier-

archy. A well defined value hierarchy ensures that all objectives important to the

organization are accounted for and that they have associated attributes for which to

measure how successfully alternatives can meet these criteria. Our two case studies

showed how a university with a well defined value hierarchy could successfully order

alternatives at least 85% of the time while the university that lacked a well defined

hierarchy was only accurate 55% of the time. Second, VFT allows for the ability

to conduct deterministic sensitivity and sensitivity analysis on alternatives. This is

particularly useful when working with a smaller group, when a smaller sample wants

to be examined for additional consideration, or when there is a group of people select-

ing students because transparency leads to better discussion and coordination within

the team. Finally, VFT provides a score for each alternative as opposed to simply

rank ordering them. This provides decision makers (DM) the ability to examine the

difference in magnitude between alternatives or students.

Throughout this research the statistical software R (Version 3.4.3) aided in calcu-

lations and visualizations. While there are several other programs that are designed

specifically for VFT, R offers the distinct advantage that it is open source software

and users can create and save programs to a global repository for anyone to use free

of charge. The use of software assisted in solving calculations quickly and reduced

chances of error by allowing for the ability to create custom functions that could be
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recalled. The same was done to aid in creating the visualization.

5.2 Recommendations for Future Work

Future work for this research could be to implement it in an organization’s selection

process and run it parallel to existing methods to compare results. It would be

most successful for organizations that can create clear hierarchies based upon their

requirements. This method could be successfully implemented in special operations

units selection process, due to the challenges in selecting high performing individuals

and the cost associated with accessing them.

A second area for future work would be to continue working with the two univer-

sities used in the case studies to build upon their selection process. These models

can be further refined with platinum and gold standard documents to better replicate

their criteria and weights associated with them. Uncertainty could also be added into

the model to make it more robust.

Finally, the custom R functions that were used throughout this research can be

packaged together and posted to the Comprehensive R Archive Network (CRAN).

There is currently very few decision analysis packages in R, so this can help fill that

void.
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Appendix A. R Code

1.1 Calculating ρ

SAVF c a l c rho <− function ( x low , x mid , x high , increment = 1) {

i f ( increment == 1) {

z <− ( x mid − x low ) / ( x high − x low )

i f ( z <= 0 . 5 ) {

f 1 <− function ( r ) (−0.5 + (1 − exp(−z / r ) ) / (1 − exp(−1 / r ) ) )

va lue <− s t a t s : : uniroot ( f1 , i n t e r v a l = c ( 0 , 1 3 ) )

R <− value$ root

rho <− R ∗ ( x high − x low )

return ( rho )

} else {

z <− 1 − z

f 1 <− function ( r ) (−0.5 + (1 − exp(−z / r ) ) / (1 − exp(−1 / r ) ) )

va lue <− s t a t s : : uniroot ( f1 , i n t e r v a l = c ( 0 , 1 3 ) )

R <− −value$ root

rho <− R ∗ ( x high − x low )

return ( rho )

}} else {

z <− ( x high − x mid ) / ( x high − x low )
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i f ( z <= 0 . 5 ) {

f 1 <− function ( r ) (−0.5 + (1 − exp(−z / r ) ) / (1 − exp(−1 / r ) ) )

va lue <− s t a t s : : uniroot ( f1 , i n t e r v a l = c ( 0 , 1 3 ) )

R <− value$ root

rho <− R ∗ ( x high − x low )

return ( rho )

} else {

z <− 1 − z

f 1 <− function ( r ) (−0.5 + (1 − exp(−z / r ) ) / (1 − exp(−1 / r ) ) )

va lue <− s t a t s : : uniroot ( f1 , i n t e r v a l = c ( 0 , 1 3 ) )

R <− −value$ root

rho <− R ∗ ( x high − x low )

return ( rho )

}

}

}

1.2 Plotting Exponential SAVF

SAVF exp plot <− function (x , x low , x mid , x high , increment = 1){

i f ( increment == 1){

rho <− SAVF c a l c rho ( x low , x mid , x high , increment = 1)

x d e s i r e d <− x

y d e s i r e d <− SAVF exp s co r e (x , x low , x mid , x high , increment = 1)

x <− seq ( x low , x high , by = ( x high − x low )/1000)
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v <− SAVF exp s co r e (x , x low , x mid , x high , increment = 1)

df <− data . frame ( x = x , v = v )

ggp lot (df , aes (x , v ) ) +

geom l i n e ( ) +

geom point ( aes ( y = y des i r ed , x = x d e s i r e d ) , s i z e = 3 ,

c o l o r = ” blue ” ) +

xlab ( ”Raw Value” ) + ylab ( ”SAVF Score ” )

} else {

rho <− SAVF c a l c rho ( x low , x mid , x high , increment = 2)

x d e s i r e d <− x

y d e s i r e d <− SAVF exp s co r e (x , x low , x mid , x high , increment = 2)

x <− seq ( x low , x high , by = ( x high − x low )/1000)

v <− SAVF exp s co r e (x , x low , x mid , x high , increment = 2)

df <− data . frame ( x = x , v = v )

ggp lot (df , aes (x , v ) ) +

geom l i n e ( ) +

geom point ( aes ( y = y des i r ed , x = x d e s i r e d ) , s i z e = 3 ,

c o l o r = ” blue ” ) +

xlab ( ”Raw Value” ) + ylab ( ”SAVF Score ” )

}

}

1.3 Exponential SAVF Score

SAVF exp s co r e <− function (x , x low , x mid , x high , increment = 1){
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i f ( increment == 1){

rho <− SAVF c a l c rho ( x low , x mid , x high , increment = 1)

value <− (1 − exp ( ( x − x low ) / rho ) ) / (1 − exp ( ( x high − x low ) / rho ) )

return ( va lue )

} else {

rho <− SAVF c a l c rho ( x low , x mid , x high , increment = 2)

value <− (1 − exp ( ( x high − x ) / rho ) ) /(1 − exp ( ( x high − x low ) / rho ) )

return ( va lue )

}

}

1.4 MAVF Score

MAVF Scores <− function (SAVF matrix , weights , names){

SAVF matrix [ i s .na(SAVF matrix ) ] <− 0

MAVF <− SAVF matrix %∗% weights

value <− data . frame (names , MAVF)

names( va lue ) <− c ( ”Name” , ” Score ” )

va lue <− value [ order ( va lue$Score , d e c r ea s ing = TRUE) , ]

return ( va lue )

}

1.5 MAVF Breakout Graph
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MAVF breakout <− function (SAVF matrix , weights , names){

SAVF matrix [ i s .na(SAVF matrix ) ] <− 0

SAVF <− t (SAVF matrix ) ∗ weights

MAVF <− SAVF matrix %∗% weights

value <− data . frame (names , MAVF, t (SAVF) )

va lue %>%

gather ( Measurement , Value , −c ( 1 , 2 ) ) %>%

group by( Measurement ) %>%

ggplot ( aes ( x = reo rde r (names , MAVF) , y = Value , f i l l = Measurement ) ) +

geom bar ( stat = ” i d e n t i t y ” ) +

coord f l i p ( ) +

ylab ( ”Weighted SAVF Scores ” ) + xlab ( ” A l t e r n a t i v e s ” ) +

g g t i t l e ( ”Breakout o f Weighted SAVF” )

}

1.6 Sensitivity Analysis

s e n s i t i v i t y plot <− function (SAVF matrix , weights , names , c r i t e r i a ){

SAVF matrix [ i s .na(SAVF matrix ) ] <− 0

i <− c r i t e r i a

x <− seq (0 , 1 , by = 0 . 1 )

m <− matrix (NA, nrow = length (weights ) , ncol = 11)
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for ( j in 1 : length (weights ) ){

m[ j , ] <− (1 − x ) (weights [ j ] / (1 − weights [ i ] ) )

m[ i , ] <− x

M <− data . frame (MAVF Scores (SAVF matrix , m, names ) )

names(M) <− c ( ”Names” , x )}

M %>%

gather ( Weight , Value , −c ( 1 ) ) %>%

ggplot ( aes ( x = as .numeric ( Weight ) , y = Value ,

group = Names , co l ou r = Names ) ) +

geom l i n e ( ) + geom v l i n e ( x i n t e r c e p t = weights [ i ] ) +

ylab ( ”MAVF Score ” ) + xlab ( ”Weight” )

}
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